February 4, 2016 - 7:28 PM EST
Print Email Article Font Down Font Up
"Apparatus for Performing Oil Field Laser Operations" in Patent Application Approval Process (USPTO 20160017661)

By a News Reporter-Staff News Editor at Energy Weekly News -- A patent application by the inventors Zediker, Mark S. (

Castle Rock, CO
); Land, Mark S. (
Houston, TX
); Rinzler, Charles C. (
Boston, MA
); Faircloth, Brian O. (
Evergreen, CO
); Koblick, Yeshaya (
Sharon, MA
); Moxley, Joel F. (
Highlands Ranch, CO
), filed on July 18, 2014, was made available online on January 28, 2016, according to news reporting originating from
Washington, D.C.
, by VerticalNews correspondents.

This patent application is assigned to Foro Energy, Inc.

The following quote was obtained by the news editors from the background information supplied by the inventors: "The present invention relates to methods, apparatus and systems for delivering high power laser energy over long distances, while maintaining the power of the laser energy to perform desired tasks. In a particular, the present invention relates to a laser bottom hole assembly (LBHA) for delivering high power laser energy to the bottom of a borehole to create and advance a borehole in the earth.

"In general, boreholes have been formed in the earth's surface and the earth, i.e., the ground, to access resources that are located at and below the surface. Such resources would include hydrocarbons, such as oil and natural gas, water, and geothermal energy sources, including hydrothermal wells. Boreholes have also been formed in the ground to study, sample and explore materials and formations that are located below the surface. They have also been formed in the ground to create passageways for the placement of cables and other such items below the surface of the earth.

"The term borehole includes any opening that is created in the ground that is substantially longer than it is wide, such as a well, a well bore, a well hole, and other terms commonly used or known in the art to define these types of narrow long passages in the earth. Although boreholes are generally oriented substantially vertically, they may also be oriented on an angle from vertical, to and including horizontal. Thus, using a level line as representing the horizontal orientation, a borehole can range in orientation from 0.degree. i.e., a vertical borehole, to 90.degree.,i.e., a horizontal borehole and greater than 90.degree. e.g., such as a heel and toe. Boreholes may further have segments or sections that have different orientations, they may be arcuate, and they may be of the shapes commonly found when directional drilling is employed. Thus, as used herein unless expressly provided otherwise, the 'bottom' of the borehole, the 'bottom' surface of the borehole and similar terms refer to the end of the borehole, i.e., that portion of the borehole farthest along the path of the borehole from the borehole's opening, the surface of the earth, or the borehole's beginning.

"Advancing a borehole means to increase the length of the borehole. Thus, by advancing a borehole, other than a horizontal one, the depth of the borehole is also increased. Boreholes are generally formed and advanced by using mechanical drilling equipment having a rotating drilling bit. The drilling bit is extending to and into the earth and rotated to create a hole in the earth. In general, to perform the drilling operation a diamond tip tool is used. That tool must be forced against the rock or earth to be cut a with a sufficient force to exceed the shear strength of that material. Thus, in conventional drilling activity mechanical forces exceeding the shear strength of the rock or earth must be applied to that material. The material that is cut from the earth is generally known as cuttings, i.e., waste, which may be chips of rock, dust, rock fibers, and other types of materials and structures that may be created by thermal or mechanical interactions with the earth. These cuttings are typically removed from the borehole by the use of fluids, which fluids can be liquids, foams or gases.

"In addition to advancing the borehole, other types of activities are performed in or related to forming a borehole, such as, work over and completion activities. These types of activities would include for example the cutting and perforating of casing and the removal of a well plug. Well casing, or casing, refers to the tubulars or other material that are used to line a wellbore. A well plug is a structure, or material that is placed in a borehole to fill and block the borehole. A well plug is intended to prevent or restrict materials from flowing in the borehole.

"Typically, perforating, i.e., the perforation activity, involves the use of a perforating tool to create openings, e.g. windows, or a porosity in the casing and borehole to permit the sought after resource to flow into the borehole. Thus, perforating tools may use an explosive charge to create, or drive projectiles into the casing and the sides of the borehole to create such openings or porosities.

"The above mentioned conventional ways to form and advance a borehole are referred to as mechanical techniques, or mechanical drilling techniques, because they require a mechanical interaction between the drilling equipment, e.g., the drill bit or perforation tool, and the earth or casing to transmit the force needed to cut the earth or casing.

"It has been theorized that lasers could be adapted for use to form and advance a borehole. Thus, it has been theorized that laser energy from a laser source could be used to cut rock and earth through spalling, thermal dissociation, melting, vaporization and combinations of these phenomena. Melting involves the transition of rock and earth from a solid to a liquid state. Vaporization involves the transition of rock and earth from either a solid or liquid state to a gaseous state. Spalling involves the fragmentation of rock from localized heat induced stress effects. Thermal dissociation involves the breaking of chemical bonds at the molecular level.

"To date it is believed that no one has succeeded in developing and implementing these laser drilling theories to provide an apparatus, method or system that can advance a borehole through the earth using a laser, or perform perforations in a well using a laser. Moreover, to date it is believed that no one has developed the parameters, and the equipment needed to meet those parameters, for the effective cutting and removal of rock and earth from the bottom of a borehole using a laser, nor has anyone developed the parameters and equipment need to meet those parameters for the effective perforation of a well using a laser. Further is it believed that no one has developed the parameters, equipment or methods need to advance a borehole deep into the earth, to depths exceeding about 300 ft (0.09 km), 500 ft (0.15 km), 1000 ft, (0.30 km), 3,280 ft (1 km), 9,840 ft (3 km) and 16,400 ft (5 km), using a laser. In particular, it is believed that no one has developed parameters, equipments, or methods nor implemented the delivery of high power laser energy, i.e., in excess of 1 kW or more to advance a borehole within the earth.

"While mechanical drilling has advanced and is efficient in many types of geological formations, it is believed that a highly efficient means to create boreholes through harder geologic formations, such as basalt and granite has yet to be developed. Thus, the present invention provides solutions to this need by providing parameters, equipment and techniques for using a laser for advancing a borehole in a highly efficient manner through harder rock formations, such as basalt and granite.

"The environment and great distances that are present inside of a borehole in the earth can be very harsh and demanding upon optical fibers, optics, and packaging. Thus, there is a need for methods and an apparatus for the deployment of optical fibers, optics, and packaging into a borehole, and in particular very deep boreholes, that will enable these and all associated components to withstand and resist the dirt, pressure and temperature present in the borehole and overcome or mitigate the power losses that occur when transmitting high power laser beams over long distances. The present inventions address these needs by providing a long distance high powered laser beam transmission means.

"It has been desirable, but prior to the present invention believed to have never been obtained, to deliver a high power laser beam over a distance within a borehole greater than about 300 ft (0.90 km), about 500 ft (0.15 km), about 1000 ft, (0.30 km), about 3,280 ft (1 km), about 9,8430 ft (3 km) and about 16,400 ft (5 km) down an optical fiber in a borehole, to minimize the optical power losses due to non-linear phenomenon, and to enable the efficient delivery of high power at the end of the optical fiber. Thus, the efficient transmission of high power from point A to point B where the distance between point A and point B within a borehole is greater than about 1,640 ft (0.5 km) has long been desirable, but prior to the present invention is believed to have never been obtainable and specifically believed to have never been obtained in a borehole drilling activity. The present invention addresses this need by providing an LBHA and laser optics to deliver a high powered laser beam to downhole surfaces in a borehole.

"A conventional drilling rig, which delivers power from the surface by mechanical means, must create a force on the rock that exceeds the shear strength of the rock being drilled. Although a laser has been shown to effectively spall and chip such hard rocks in the laboratory under laboratory conditions, and it has been theorized that a laser could cut such hard rocks at superior net rates than mechanical drilling, to date it is believed that no one has developed the apparatus systems or methods that would enable the delivery of the laser beam to the bottom of a borehole that is greater than about 1,640 ft (0.5 km) in depth with sufficient power to cut such hard rocks, let alone cut such hard rocks at rates that were equivalent to and faster than conventional mechanical drilling. It is believed that this failure of the art was a fundamental and long standing problem for which the present invention provides a solution.

"The environment and great distances that are present inside of a borehole in the earth can be harsh and demanding upon optics and optical fibers. Thus, there is a need for methods and an apparatus for the delivery of high power laser energy very deep in boreholes that will enable the delivery device to withstand and resist the dirt, pressure and temperature present in the borehole. The present invention addresses this need by providing an LBHA and laser optics to deliver a high powered laser beam to downhole surfaces of a borehole.

"Thus the present invention addresses and provides solutions to these and other needs in the drilling arts by providing, among other things an LBHA and laser optics that deliver a shaped high powered laser beam energy to the surfaces of a borehole."

In addition to the background information obtained for this patent application, VerticalNews journalists also obtained the inventors' summary information for this patent application: "It is desirable to develop systems and methods that provide for the delivery of high power laser energy to the bottom of a deep borehole to advance that borehole at a cost effect rate, and in particular, to be able to deliver such high power laser energy to drill through rock layer formations including granite, basalt, sandstone, dolomite, sand, salt, limestone, rhyolite, quartzite and shale rock at a cost effective rate. More particularly, it is desirable to develop systems and methods that provide for the ability to be able to deliver such high power laser energy to drill through hard rock layer formations, such as granite and basalt, at a rate that is superior to prior conventional mechanical drilling operations. The present invention, among other things, solves these needs by providing the system, apparatus and methods taught herein.

"Thus, there is provided a laser bottom hole assembly comprising: a first rotating housing; a second fixed housing; the first housing being rotationally associated with the second housing; a fiber optic cable for transmitting a laser beam, the cable having a proximal end and a distal end, the proximal end adapted to receive a laser beam from a laser source, the distal end optically associated with an optical assembly; at least a portion of the optical assembly fixed to the first rotating housing, whereby the fixed portion rotates with the first housing; a mechanical assembly fixed to the first rotating housing, whereby the assembly rotates with the first housing and is capable of applying mechanical forces to a surface of a borehole upon rotation; and, a fluid path associated with first and second housings, the fluid path having a distal and proximal opening, the distal opening adapted to discharge the fluid toward the surface of the borehole, whereby fluid for removal of waste material is transmitted by the fluid path and discharged from the distal opening toward the borehole surface to remove waste material from the borehole.

"There is further provided a laser bottom hole assembly comprising: a first rotating housing; a second fixed housing; the first housing being rotationally associated with the second housing; an optical assembly, the assembly having a first portion and a second portion; a fiber optic cable for transmitting a laser beam, the cable having a proximal end and a distal end, the proximal end adapted to receive a laser beam from a laser source, the distal end optically associated with the optical assembly; the fiber proximal and distal ends fixed to the second housing; the first portion of the optical assembly fixed to the first rotating housing; the second portion of the optical assembly fixed to the second fixed housing, whereby the first portion of the optical assembly rotates with the first housing; a mechanical assembly fixed to the first rotating housing, whereby the assembly rotates with the first housing and is capable of apply mechanical forces to a surface of a borehole upon rotation; and, a fluid path associated with first and second housings, the fluid path having a distal and proximal opening, the distal opening adapted to discharge the fluid toward the surface of the borehole, the distal opening fixed to the first rotating housing, whereby fluid for removal of waste material is transmitted by the fluid path and discharged from the distal opening toward the borehole surface to remove waste material from the borehole; wherein upon rotation of the first housing the optical assembly first portion, the mechanical assembly and proximal fluid opening rotate substantially concurrently.

"Still further there is provided a laser bottom hole assembly comprising: a first rotating housing; a second fixed housing; the first housing being rotationally associated with the second housing; a motor for rotating the first housing; a fiber optic cable for transmitting a laser beam, the cable having a proximal end and a distal end, the proximal end adapted to receive a laser beam from a laser source, the distal end optically associated with an optical assembly; at least a portion of the optical assembly fixed to the first rotating housing, whereby the fixed portion rotates with the first housing; a mechanical assembly fixed to the first rotating housing, whereby the assembly rotates with the first housing and is capable of apply mechanical forces to a surface of a borehole upon rotation; and, a fluid path associated with first and second housings, the fluid path having a distal and proximal opening, the distal opening adapted to discharge the fluid toward the surface of the borehole, whereby fluid for removal of waste material is transmitted by the fluid path and discharged from the distal opening toward the borehole surface to remove waste material from the borehole.

"Moreover there is provided a laser bottom hole assembly comprising: a means for providing rotation; a means for providing a high power laser beam; a means for manipulating the laser beam; a means for mechanically removing material; a means for providing a fluid flow; and, a means for coupling the rotation means, the manipulation means, the mechanical removal means, and the fluid flow means to provide simultaneous and uniform rotation of said means. Further and by way of illustration the means for rotation may comprise a housing, the housing may comprise a first part and a second part wherein the first part of the housing may be fixed and the second part of the housing may be rotatable, the means for providing a high power laser beam may be a fiber optic cable, the means for providing a high power laser beam may comprise a plurality of fiber optic cables, or the first part of the housing may rotate and the second part of the housing may be fixed.

"Additionally there is provided a laser bottom hole assembly comprising: a housing; a means for providing a high power laser beam; an optical assembly, the optical assembly providing an optical path upon which the laser beam travels; and, a means for creating an area of high pressure along the optical path; and, a means for providing aspiration pumping for the removal of waste material from the area of high pressure.

"Still further there is provided a high power laser drilling system for advancing a borehole having at least about 500 feet, 1000 feet, or 5000 feet of tubing, having a distal end and a proximal and the tubing comprising a high power laser transmission cable, the transmission cable having a distal end and a proximal end, the proximal end being in optical communication with the laser source, whereby the laser beam is transmitted by the cable from the proximal end to the distal end of the cable for delivery of the laser beam energy to a laser bottom hole assembly which has a housing; and, an optical assembly. Further the bottom hole assembly may have beam shaping optics, a means for rotating a housing, a means for directing a fluid for removal of waste material, a means for keeping a laser path free of debris, or a means for reducing the interference of waste material with the laser beam.

"Furthermore, these systems and assemblies may further have rotating laser optics, a rotating mechanical interaction device, a rotating fluid delivery means, one or all three of these devices rotating together, beam shaping optic, housings, a means for directing a fluid for removal of waste material, a means for keeping a laser path free of debris, a means for reducing the interference of waste material with the laser beam, optics comprising a scanner; a stand-off mechanical device, a conical stand-off device, a mechanical assembly comprises a drill bit, a mechanical assembly comprising a three-cone drill bit, a mechanical assembly comprises a PDC bit, a PDC tool or a PDC cutting tool.

"One of ordinary skill in the art will recognize, based on the teachings set forth in these specifications and drawings, that there are various embodiments and implementations of these teachings to practice the present invention. Accordingly, the embodiments in this summary are not meant to limit these teachings in any way.

BRIEF DESCRIPTION OF THE DRAWINGS

"FIG. 1A is a perspective view of a LBHA.

"FIG. 1B is a cross sectional view of the LBHA of FIG. 1A taken along B-B.

"FIG. 2 cutaway view of an LBHA.

"FIGS. 3A & 3B are cross sectional views of an LBHA.

"FIG. 4 is a laser drilling system."

URL and more information on this patent application, see: Zediker, Mark S.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F. Apparatus for Performing Oil Field Laser Operations. Filed July 18, 2014 and posted January 28, 2016. Patent URL: http://appft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&u=%2Fnetahtml%2FPTO%2Fsearch-adv.html&r=4148&p=83&f=G&l=50&d=PG01&S1=20160121.PD.&OS=PD/20160121&RS=PD/20160121

Keywords for this news article include: Oil & Gas, Oil Field, Foro Energy Inc..

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2016, NewsRx LLC

DISCLOSURE: The views and opinions expressed in this article are those of the authors, and do not represent the views of equities.com. Readers should not consider statements made by the author as formal recommendations and should consult their financial advisor before making any investment decisions. To read our full disclosure, please go to: http://www.equities.com/disclaimer


Source: Equities.com News (February 4, 2016 - 7:28 PM EST)

News by QuoteMedia
www.quotemedia.com

Legal Notice