May 12, 2016 - 7:20 PM EDT
Print Email Article Font Down Font Up
Patent Issued for Method and Apparatus for Protecting Downhole Components from Shock and Vibration (USPTO 9328603)

By a News Reporter-Staff News Editor at Electronics Newsweekly -- From Alexandria, Virginia, VerticalNews journalists report that a patent by the inventor Pope, Jason Michael (Magnolia, TX), filed on November 22, 2013, was published online on May 3, 2016.

The patent's assignee for patent number 9328603 is Hunting Energy Services, Inc. (Houston, TX).

News editors obtained the following quote from the background information supplied by the inventors: "The present invention relates generally to protecting downhole components from shock and vibration while drilling a well and, in particular, to a method and apparatus for protecting measurement while drilling equipment from shock and vibration using a locking mule shoe system.

"In the drilling of deep bore holes for the exploration and extraction of crude oil and natural gas, the 'rotary' drilling technique has become a commonly accepted practice. This technique involves using a drill string, which consists of numerous sections of hollow pipe connected together with a drill bit being located at the bottom end. The rotation and compression of the drilling bit causes the formation being drilled to be successively crushed and pulverized. Drilling fluid, frequently referred to as 'mud', is pumped down the hollow center of the drill string, through nozzles on the drilling bit and then back to the surface around the annulus of the drill string. This fluid circulation is used to transport the cuttings from the bottom of the bore hole to the surface where they are filtered out and the drilling fluid is re-circulated as desired. The flow of the drilling fluid, in addition to removing cuttings, provides other secondary functions such as cooling and lubricating the drilling bit cutting surfaces and exerts a hydrostatic pressure against the bore hole walls to help contain any entrapped gases that are encountered during the drilling process.

"Since the advent of drilling bore holes, the need to measure certain parameters at the bottom of the bore hole and provide this information to the driller has been recognized. These parameters include, for example, the temperature and pressure at the bottom of a bore well, the inclination or angle of the bore well, the direction or azimuth of the bore well, and various geophysical parameters that are of interest and value during the drilling process. The challenge of measuring these parameters in the hostile environment at the bottom of the bore well during the drilling process and somehow conveying this information to the surface in a timely fashion has led to the development of many devices and practices over the years.

"The general class of tools used today to send data from the bottom of the well to the surface while drilling are referred to as 'measurement while drilling' (hereafter 'MWD' tools). Types of MWD tools contemplated by the prior art have been such things as electromagnetic waves or EM (low frequency radio waves or signals, currents in the earth or magnetic fields), acoustic (akin to sonar through the mud or pipe and using mechanical vibrations) and pressure or mud pulse (sending pulses through the mud stream using a valve mechanism).

"Downhole tools of the above type are subjected to substantial forces and vibration during drilling. Sensor packages and other sensitive downhole electronics, such as those housed in measurement-while-drilling (MWD) tools, steering tools, gyros, or logging-while-drilling (LWD) tools, are particularly vulnerable to damage from vibration and shock during drilling. Unless the electronics in downhole tools are mounted in such a way as to reduce the vibration and shock that is felt by the electronics, the vibration and shock will ultimately reduce the life cycle of the electronics, as well as adding fatigue and wear to the bottom hole assembly. Reducing shock and vibration felt by the electronics extends their life cycle, which saves valuable time and money that would be spent replacing or repairing the directional sensors and electronics. Accordingly, additional measures to minimize shock and vibration that reaches electronics are needed.

"One common feature of MWD tools of the type under consideration is to provide a mechanism for orienting the tool downhole. In order to ascertain the angular orientation of a drill bit, or the like, it is common practice in the art to dispose a radially inwardly extending camming member within a bore extending through the tool string. The camming member may be a key, a spline surface, or the like. The camming member is usually in a predetermined angular orientation with respect to the drill bit or member whose orientation it is desired to ascertain. For example, the 'lower end assembly' of such tools often terminate at the bottom end in a 'mule shoe' arrangement. The mule shoe internal bore receives what is called a pulser helix which is, in turn, attached to a poppet housing. The pulser helix has an axially extending camming surface which contacts the camming member inside the mule shoe as the pulser helix is inserted within the bore of the mule shoe. Abutting engagement of the camming surface and camming member acts to rotate the directional drilling assembly. When the camming surface and camming member are fully engaged, the directional ascertaining element of the assembly may accurately plot or record the orientation at which the camming member, and therefore the drill bit, are disposed relative to a predetermined datum.

"Even though the pulser helix may be affixed to the mule shoe with a key arrangement or the like, some movement and vibration are still possible. For example, some oil and gas exploration and production companies at the present time use vibrating devices known as 'agitators' to increase penetration rates while drilling wells. Agitators typically operate or reciprocate between about 12 and 26 hertz during drilling operations, and constantly vibrate at these frequencies. Accordingly, agitators provide additional shock and vibration throughout the drill string that improve drilling performance. However, these devices can cause damage to or the failure of the sensitive downhole components used in the MWD systems. Such sensitive electronic components of the MWD systems may be subjected to g-force vibration and shock on the order of 100 g's in amplitude.

"Thus, despite improvements that have been made in MWD systems, a need continues to exist for a method and improved apparatus for further reducing shock and vibration in such devices in use."

As a supplement to the background information on this patent, VerticalNews correspondents also obtained the inventor's summary information for this patent: "The invention described herein deals with improvements in the 'lower end assembly' of a measurement while drilling (MWD) tool, where the lower end assembly includes a mule shoe with an interior which receives a pulser helix, the pulser helix being attached to a poppet housing at an end opposite the mule shoe. These are all traditional components of such lower end assemblies. However, the improved lower end of the invention incorporates a novel arrangement of an extended locking cuff, an abrasion ring and a locking nut. The addition of these new components results in a lower end assembly which is more completely secured and thus more completely protected from the effects of shock and vibration during drilling than were the prior art assemblies.

"The extended locking cuff which is used in the improved assembly has a first externally threaded extent which is received within a mating internally threaded bore at one extent of the mule shoe. The extended locking cuff also has a threaded internal diameter which is sized to allow the passage of the pulser helix when the pulser helix is passed through the locking cuff into the interior of the mule shoe.

"The abrasion ring is received about the external diameter of the pulser helix. The abrasion ring is received on a shoulder located between the pulser helix and the poppet housing. The poppet housing has a lower threaded extent which engages a mating threaded extent of the upper end of the pulser helix to retain the abrasion ring in position on the shoulder.

"The locking nut has an internal bore which is sized to be received over the external diameter of the poppet housing. The locking nut also has an externally threaded lower extent which is sized to be received within a mating threaded bore in the extended locking cuff so that a portion of the locking nut is located between the locking cuff and the poppet housing. Tightening the locking nut within the bore of the locking cuff serves to lock the lower end assembly with respect to the mule shoe.

"Preferably, the locking nut has a tool receiving end located opposite the externally threaded lower end, the tool receiving end terminating in a collet-like profile. The collet-like profile preferably comprises a series of alternating tongues and slots. A hand wrench can conveniently be used to turn the locking nut to engage the extended locking cuff by providing the wrench with a wrench end which engages selected ones of the tongues and slots so that turning the wrench end turns the locking nut.

"A method is also shown for protecting sensitive components contained in a lower end assembly of a measurement while drilling too while drilling where the measurement while drilling tool is attached to a drill bit at one end and to an electronics package at an opposite end. As previously described, the lower end assembly is provided with a mule shoe with an interior which receives a pulser helix, the pulser helix having a threaded upper extent, an external diameter and an external orienting surface located on the external diameter for contacting a mating orienting surface within the mule shoe interior. The pulser helix is attached to a poppet housing at an end opposite the mule shoe, the poppet housing having an external diameter, a threaded upper extent and a threaded lower extent. The poppet housing can be attached at the upper extent thereof to a screen housing.

"In the assembly method of the invention, the lower end assembly is provided with a series of new components including the extended locking cuff, abrasion ring and lock nut, previously described, which secure the components of the lower end assembly in place during drilling, the new components being assembled as follows: installing the extended locking cuff on an upper end of the mule shoe, the locking cuff having a first externally threaded extent which is received within a mating internally threaded bore of the mule shoe, the extended locking cuff also having a threaded internal diameter which is sized to allow the passage of the pulser helix when the pulser helix is passed through the locking cuff into the interior of the mule shoe; installing the abrasion ring about the external diameter of the pulser helix, the abrasion ring being received on a shoulder located between the pulser helix and the poppet housing, the poppet housing having a lower threaded extent which is engaged with a mating threaded extent of the upper end of the pulser helix to retain the abrasion ring in position on the shoulder; inserting the pulser helix into the interior of the mule shoe and locking it in place with a mule shoe key; wherein the locking nut is provided with an internal bore which is sized to be received over the external diameter of the poppet housing, the locking nut also having an externally threaded lower extent which is sized to be received within a mating threaded bore in the extended locking cuff; sliding the locking nut over the poppet housing into engagement with the extended wear cuff, so that a portion of the locking nut is located between the locking cuff and the poppet housing; tightening the locking nut within the bore of the locking cuff, whereby the tightening action serves to lock the lower end assembly with respect to the mule shoe.

"Additional objects, features and advantages will be apparent in the written description which follows."

For additional information on this patent, see: Pope, Jason Michael. Method and Apparatus for Protecting Downhole Components from Shock and Vibration. U.S. Patent Number 9328603, filed November 22, 2013, and published online on May 3, 2016. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=9328603.PN.&OS=PN/9328603RS=PN/9328603

Keywords for this news article include: Electronics, Hunting Energy Services Inc.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2016, NewsRx LLC

DISCLOSURE: The views and opinions expressed in this article are those of the authors, and do not represent the views of equities.com. Readers should not consider statements made by the author as formal recommendations and should consult their financial advisor before making any investment decisions. To read our full disclosure, please go to: http://www.equities.com/disclaimer


Source: Equities.com News (May 12, 2016 - 7:20 PM EDT)

News by QuoteMedia
www.quotemedia.com

Legal Notice