March 24, 2016 - 10:12 PM EDT
Print Email Article Font Down Font Up
Patent Issued for Mobile Heater and Fan System and Methods of Commissioning a Data Center (USPTO 9285138)

By a News Reporter-Staff News Editor at Electronics Newsweekly -- McKinstry Co., LLC (

Seattle, WA
) has been issued patent number 9285138, according to news reporting originating out of
Alexandria, Virginia
, by VerticalNews editors.

The patent's inventor is Sasser, John D. (

Seattle, WA
).

This patent was filed on September 19, 2014 and was published online on March 15, 2016.

From the background information supplied by the inventors, news correspondents obtained the following quote: "Modern data centers often include a substantial volume of electronic hardware components, such as processor, storage and packet management devices, and the like. Some of these devices generate heat when operated. For instance, a Blade Server system generates significant amounts of heat. Furthermore, the faster the devices are operated, generally the more heat generated. Because these devices are packaged in ever-increasing densities and operated at ever-increasing speeds, the heat density within operating data centers is increasing.

"For those that design, build and operate data centers, dissipating this heat is a significant issue. Failure to adequately dissipate the heat may cause the electronics within the data center to malfunction or catastrophically fail. Such scenarios can lead to the disruption or downtime of the services provided by the data center. Disruption of data centers, even for a short amount of time, can lead to significant decreases in revenue. In the last several years, data center designers have implemented physical containment strategies as an efficiency strategy. Containment strategies include placing physical barriers to prevent the conditioned computer inlet air from mixing with the heated server exhaust air.

"Accordingly, the heating, ventilation and air conditioning (HVAC) system of a facility must be designed to adequately dissipate the heat generated during the data center's operation. In a data center using containment, it is important to ensure that the HVAC system can produce sufficient airflow to deliver the rated cooling. Furthermore, testing the facility's HVAC system prior to installing the heat generating electronic components is desired. Accordingly, a need exists to simulate the expected heat generation of data centers without having to install and operate the associated electronics.

"It has long been customary for organizations testing the data center's HVAC and electrical systems to use portable load banks. The load banks generate heat, but they do not adequately test airflow. There are also relatively small (4000 CFM) fan devices which can be mounted in server cabinets and simulate the server airflow. Typically, when a facility such as this is commissioned, there are no server cabinets, so it is impractical to use these small, cabinet-mounted fans. It is for these and other concerns that the following disclosure is offered."

Supplementing the background information on this patent, VerticalNews reporters also obtained the inventor's summary information for this patent: "The present disclosure is directed towards mobile systems and methods of operating the mobile systems for simulating expected thermal loads. A first embodiment of a mobile system for simulating a thermal load expected in the operation of a data center includes a thermal energy source, an impeller and an outlet port. The system may include an impeller drive unit, a frame and at least one ground-engaging member. The thermal energy source provides thermal energy to air adjacent to the thermal energy source. The impeller controls a flow rate of air adjacent to the thermal energy source. The outlet port dispenses or outputs the flowing air. The impeller drive unit drives the impeller at a frequency based on a determined airflow at the outlet port. The frame supports the thermal energy source, the impeller, the output port and the drive unit. The ground-engaging member supports the frame and enables the mobility of the system.

"In at least one embodiment, the system includes a duct to direct the flowing air through the output port. The system may include a thermal energy source drive unit. The thermal energy source drive unit controls an amount of thermal energy provided to the air adjacent to the thermal energy source based on a predetermined temperature of the air outputted at the output port. The system includes an interlock switch that inhibits an operation of the thermal energy source, for example, when a temperature of the thermal energy source is greater than a predetermined temperature threshold or airflow across the thermal energy source is less than a predetermined airflow threshold.

"A vertical height of the output port is adjustable. This provides various benefits, for example, it allows the output port to be connected to a ceiling plenum, when testing calls for it. Various embodiments include a variable length power cord to provide electrical power. The system is mobile during operation of the system. A cross section of the output port is adjustable. Various embodiments include a safety grate to protect at least one of the impeller or the thermal energy source. The system includes a collapsible duct to accommodate a variable height of the frame.

"A method for commissioning a data center includes determining an expected air temperature based on a hardware utilization factor. The method includes determining an expected airflow based on the hardware utilization. In various embodiments, the method includes controlling a thermal energy source based on the expected air temperature. The method may include providing a signal to drive an impeller and induce airflow of the heater air based on the expected airflow.

"In some embodiments, the thermal energy source and the impeller are integrated with a mobile cart. A variable frequency drive (VFD) provides the signal. The method may include controlling a frequency of the signal provided by the VFD based on an actual airflow. The method includes inhibiting the operation of the thermal energy source when at least a temperature of the thermal energy source is greater than a predetermined temperature threshold or airflow across the thermal energy source is less than a predetermined airflow threshold.

"In various embodiments, a cart for commissioning a data center includes a duct, a duct heater, a fan, an output port, a frame and a plurality of wheels. The duct heater heats air flowing through the duct. The fan induces the flow of air through the duct. The output port is coupled to the duct. The frame supports the duct, the duct heater, the fan and the output port. The wheels support the frame and enable the translation of the cart to a plurality of positions within the data center.

"A vertical height of the frame is adjustable to enable a user to vary the vertical position of the output port. An effective length of a portion of the duct is adjustable to accommodate a variable vertical height of the output port. In at least one embodiment, the cart includes a VFD to drive the fan at a variable frequency based on the induced airflow through the duct.

"In at least one embodiment, the cart includes a switch that prevents the operation of the duct heater, for example when a temperature of the duct heater is greater than a predetermined temperature threshold or an airflow across the duct heater is less than a predetermined airflow threshold. The duct and the fan may be oriented such that the flow of air through the duct is substantially a vertical flow of air."

For the URL and additional information on this patent, see: Sasser, John D.. Mobile Heater and Fan System and Methods of Commissioning a Data Center.

U.S.
Patent Number 9285138, filed September 19, 2014, and published online on March 15, 2016. Patent URL: http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=9285138.PN.&OS=PN/9285138RS=PN/9285138

Keywords for this news article include: Electronics, McKinstry Co. LLC.

Our reports deliver fact-based news of research and discoveries from around the world. Copyright 2016, NewsRx LLC

DISCLOSURE: The views and opinions expressed in this article are those of the authors, and do not represent the views of equities.com. Readers should not consider statements made by the author as formal recommendations and should consult their financial advisor before making any investment decisions. To read our full disclosure, please go to: http://www.equities.com/disclaimer


Source: Equities.com News (March 24, 2016 - 10:12 PM EDT)

News by QuoteMedia
www.quotemedia.com

Legal Notice